Rapid Formation of N-Nitrosamines from Nitric Oxide in the Presence of Silver(1) Salts

By Brian C. Challis* and Jerry R. Outram (Department of Chemistry, Imperial College, London SW7 2AY)

Summary N-Nitrosamines form rapidly from NO and secondary amines in the presence of Ag^I salts via amino radical cation intermediates derived from Ag^{II}-amine complexes.

We have shown¹ that NO is an ineffectual reagent for the N-nitrosation of amines in the absence of either oxygen or iodides including iodine itself. Activation by oxygen results from the formation of either N_2O_3 or $N_2O_4^{12}$ and by iodides from the formation of NOI.¹¹¹ Other work has shown that the N-nitrosation of amines by NO may also be catalysed by Cu^{II} and Fe^{III} salts.² These reactions, which

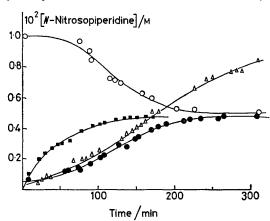


FIGURE. Formation of N-nitrosopiperidine from $2\times 10^{-2}\,\mathrm{M}$ NO and $10^{-2}\,\mathrm{M}$ piperidine in EtOH at 25 °C in the presence of $10^{-2}\,\mathrm{M}$ AgNO₃. \bigcirc , Variation in residual [piperidine]; \bigcirc , variation in [N-nitrosopiperidine]; \triangle , variation in [N-nitrosopiperidine] in the presence of $1\cdot 5\times 10^{-2}\,\mathrm{M}$ Et₃N; \bigcirc , variation in [N-nitrosopiperidine] where piperidine and AgNO₃ reacted prior to addition of NO.

have been the subject of several patents,³ are generally considered to involve oxidation of NO to NO⁺, which then reacts with unprotonated amine to give products. We report some new Ag⁺ promoted nitrosations by NO where strong evidence suggests that oxidation of the amine rather than NO is the activating process.

These reactions were carried out at $25\,^{\circ}\mathrm{C}$ in carefully degassed EtOH containing the AgI salt saturated with purified NO and contained under gaseous NO at atmospheric pressure. The equilibrium concentration of dissolved NO was ca. $2\times 10^{-2}\,\mathrm{m}$ which should be maintained during reaction by absorption from the gaseous phase. Usually, reactions were initiated by injecting the amine into the flask through a Subaseal stopper with a syringe. Aliquots were removed similarly at timed intervals for prompt g.l.c. assay of N-nitrosamine content.

Table 1. Formation of N-nitrosopiperidine from ca. 2×10^{-2} M NO in EtOH at 25 °C in the presence of AgNO₃.

10 ² [Piperidine]/м	$10^2 [{ m AgNO_3}]/{ m M}$	10 ² [N-Nitroso- piperidine]/M
1.0	0.10	0.12
1.0	0.25	0.27
1.0	0.50	0.48
1.0	$1 \cdot 0$	0.48
0.25	0.25	0.10
0.50	0.52	0.30

Variation of % reaction with time for equimolar $(10^{-2} \, \mathrm{M})$ piperidine and $\mathrm{AgNO_3}$ under various experimental conditions is shown in the Figure. The usual experimental procedure (vide supra) gave sigmoid shaped plots for both loss of piperidine and formation of N-nitrosopiperidine. During the well defined induction period (ca. 60 min) a silver mirror was progressively deposited on the walls of the reaction vessel. With a larger than 2 fold excess of piperidine, the maximum yield of N-nitrosamine (apparent after

Table 2. Maximum yields and formation times for N-nitrosamines from 2 × 10⁻² M NO in EtOH at 25 °C in the presence of AgNO₃.

Amine (0.01 m)	$10^2[\mathrm{AgNO_3}]/\mathrm{M}$	$10^2[N-Nitrosamine]/M$	Reaction time/min
Piperidine	0.25	0.27	130
Pyrrolidine	1.0	0.45	150
Morpholine	0.50	0.50	1300
N-Methylpiperazine	1.0	0.09	300
",	1.0	0.66a	150
N-Methylaniline	1.0	0.75	100
Diphenylamine	1.0	0.65	1300

^{*} In the presence of 5.4×10^{-3} M NaOEt

ca. 200 min) was governed by the Ag^I salt concentration in an approximate 1:1 relationship. (Table 1). With equimolar concentrations of AgI salt and piperidine, however, N-nitrosamine formation was slower and only ca. 50%of the amine reacted (Table 1). These observations suggest the overall stoicheiometry is defined by equation (1). Significantly, with equimolar concentration of Ag¹

salt and piperidine, the yield of N-nitrosopiperidine was increased to 100% by the addition of base such as Et₃N or 2,2',6,6'-tetramethylpiperidine (Figure). One other important observation was that the induction period noted above was not apparent when the AgI salt and piperidine were allowed to react in EtOH (to give a silver mirror) and then NO was passed into the solution (Figure).

The results are consistent with a mechanism (Scheme) involving relatively slow initial disproportionation of the Ag^I salt to give an Ag^{II}-amine complex (I). Related

SCHEME

Ag^{II}-complexes are known to be powerful oxidants capable of generating radical cations (R₂N⁺H) from amines⁴ and, presumably, of oxidising NO to NO+. Thus formation of N-nitrosopiperidine could arise from the interaction of either NO with the radical cation (II) or NO+ with the neutral piperidine. We prefer the former pathway (as in the Scheme) for the following reasons. Reaction of NO+BF₄- with 10-2 m piperidine in EtOH at 25 °C gives high yields of ethyl nitrite (EtONO) but only 0.25% of N-nitrosopiperidine, whereas the reaction with Ag^I salt and NO gives quantitative yields of N-nitrosopiperidine and very little EtONO. Further, when disproportionation of the Ag^I salt is effected by excess of NaOEt, the maximum yield of N-nitrosopiperidine decreases to ca. 5%. Finally, the addition of NO+ClO₄- to macrocyclic tetra-aza-Ag^{II} complexes gives NO plus the corresponding AgIII-complex.5

The reactions involving NO and AgI salts are not specific to piperidine and maximum yields of N-nitrosamine with formation times for other secondary amines are summarised in Table 2. Any correlation between reactivity and amine basicity (pK_a) is not apparent. The dibasic N-methylpiperazine gave no reaction without the addition of NaOEt. Most of these reactions were carried out with AgNO₃, but similar results were obtained with AgClO4.

These reactions are very much faster than N-nitrosamine formation from both dissolved NO alone $(t_{\star} ca. 8 \text{ days})^{1}$ and, for the more basic amines, from aqueous HNO2 (with $[HNO_2] = 2 \times 10^{-2} \text{ M}, t_1 \text{ (piperidine)} = ca. 34 \text{ days at pH}$ 3-3.4 The results are, therefore, relevant to assessments of human exposure to carcinogenic N-nitrosamines. In particular, they suggest that metal amine solutions may produce N-nitrosamines on exposure to NO as has been observed specifically for cutting oils.7

We thank the Cancer Research Campaign for their support and a Studentship to J.R.O.

(Received, 12th June 1978; Com. 607.)

¹ (a) B. C. Challis and S. A. Kyrtopoulos, J.C.S. Chem. Comm., 1976, 877; B. C. Challis and S. A. Kyrtopoulos, Brit. J. Cancer,

^{1977,} **35**, 693; (b) B. C. Challis and J. R. Outram, to be published.

² W. Brackman and P. J. Smit, *Rec. trav. Chim.*, 1965, **84**, 357, 372; H. Maltz, M. A. Grant and M. C. Navaroli, *J. Org. Chem.*,

^{1971,} **36**, 363.

³ E. L. Reilly, G. P. 1,085,166/1960; U.S.P. 3,153,094/1964; J. F. Haller, U.S.P. 3,065,270/1962; D. R. Lavering and L. G. Maury, U.S.P. 3,090,786/1963.

J. B. Lee, C. Parkin, M. J. Shaw, W. A. Hampson, and K. I. MacDonald, Tetrahedron, 1973, 21, 751; B. Ortz, P. Villanueva, and F. Walls, J. Org. Chem., 1972, 37, 2748; cf. N. A. Hampson, J. B. Lee, J. R. Morley, K. I. MacDonald, and B. Scanlon, Tetrahedron, 1970, 26, 1109.

⁵ E. K. Barefield and M. T. Mocella, *Inorg. Chem.*, 1973, 12, 2829.

S. S. Mirvish, Toxic App. Pharmacol., 1975, 31, 325.
 T. Y. Fan, J. Morrison, D. P. Rounbehler, D. Ross, D. H. Fine, and N. P. Sen, Science, 1977, 196, 70.